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Abstract

Most anomaly detection methods for images score anomalies based on projec-
tion error or reconstruction loss. These methods typically rely on setting a thresh-
old, determined using a validation set. If the score of a test observation exceeds
this threshold, it is classified as an anomaly. However, this approach lacks control
over the rate of false anomalies. In some applications, it is crucial to manage this
rate, ensuring that no more than a% of test observations are incorrectly flagged as
anomalies: we do not want to reject too many test observations by error. The code
is available at: https://github.com/vilhess/AnoControl

1 Introduction to Anomaly Detections

Anomaly detection algorithms identify test observations that deviate from a conform-
ing distribution. Consider the test samples Xiess = {Zon+1,T2n+2,- .-, Tantt} and
the conforming distribution Px representing our expected data. The goal is to identify
which test samples do not belong to the conforming distribution: {i | zo,4; % Px}.
Most methods are based on unsupervised learning, as anomalous samples are typi-
cally rare during training. A model s is trained on a training set without anomalies
Xirain = {x1,29,...,x,}. For a given test sample xa,,1;, a model s computes a score
s(zan+: ), representing the likelihood or degree to which the sample belongs to the con-
forming distribution. The higher the score, the more conformal the sample is according
to the model. In contrast, the lower the score, the more likely the sample is to be an
anomaly according to the model. In many applications, a threshold is determined based
on a validation set X,y = {®n41,Zn+2,- - -, Tan }- Test samples with scores lower than
this threshold are classified as anomalies, as their likelihood of belonging to the con-
forming distribution is insufficient. This threshold ensures a balance between detecting
anomalies and avoiding false positives, depending on the application’s requirements.

1.1 Anomaly detections for images

Anomaly detection in images is a powerful tool for identifying irregularities, such as
adversarial attacks or, more specifically, abnormal regions within an image, such as tu-
mor areas in a brain scan. In the first case, many algorithms focus on reconstructing the



input image to identify anomalies. Models such as GANs[2] (Generative Adversarial
Networks) and VAEs[4] (Variational Autoencoders) are commonly used. The confor-
mity score is typically derived as the inverse of the reconstruction loss: a lower loss
implies a higher conformity. Alternatively, methods such as One-Class SVM[8] and
Deep One-Class Classification[5] directly compute a conformity score without relying
on reconstruction. There is another category of methods. In an unsupervised setting,
where we cannot rely on a classification loss, DROCCI[3] attempts to adapt the prob-
lem to a classification framework. During training, only normal data are used, while
abnormal data is artificially generated to challenge the classifier. This approach can be
viewed as a form of adversarial training: the model’s objective is to classify normal data
correctly, while the training process actively seeks to generate abnormal data that can
mislead the classifier. In the case of detecting abnormal regions, reconstruction-based
algorithms, such as VAEs and GANs are employed. However, these methods focus on
evaluating the reconstruction loss at a pixel level to identify regions of anomalies. Each
pixel’s reconstruction error is calculated, and if the error exceeds a predefined thresh-
old, that pixel is classified as anomalous. This approach enables the precise localization
of abnormal regions within the image. It is important to note that this approach differs
from traditional image segmentation methods, such as those using U-Net, as it involves
training exclusively on normal images (e.g., images without tumors). This makes the
process inherently unsupervised, as it does not rely on labeled data for abnormal re-
gions. Instead, the model learns to identify deviations from normal patterns during
evaluation, enabling the detection of anomalies without explicit segmentation labels.
In this paper, we focus exclusively on addressing the first problem: detecting abnormal
images as a whole.

2 The False Anomaly Rate

The false anomaly rate is the proportion of normal test samples incorrectly classified
as anomalous by the model. Controlling this metric is essential to avoid excessive false
alarms. For instance, in autonomous vehicles, detecting image adversarial attacks is es-
sential. These attacks involve subtle manipulations to the entire image, such as changes
in lighting or added noise, which can deceive the system into making incorrect deci-
sions, potentially compromising safety. However, it is equally important to control the
rate at which normal images are mistakenly flagged as abnormal, as excessive false
positives can disrupt operations and reduce system efficiency. Therefore, balancing
sensitivity with a low false anomaly rate is crucial for maintaining both efficiency and
reliability.

2.1 Control of the False Anomaly Rate for Anomaly Detections

Let’s define our null hypothesis as follows:

Ho,i : Xonti ~ Px



where Px is the distribution of scores for normal samples. The associated p-value is
calculated as:
pi = Px(s(x) < s(Xant4)),

representing the probability of observing a value as extreme or more extreme than
Xopn+i under the null hypothesis.

To identify anomalies, we compare p; to a predefined threshold «. If p; < «, we reject
Ho,; and classify Xo,,1; as anomalous. For instance, if o = 5%, we consider X4,
anomalous if the probability of observing a more extreme value under Py is less than
5%. This approach ensures that only values significantly deviating from the normal
distribution are flagged as anomalies. The problem is that, most of the time, we do not
know how to compute such p-values, because the distribution of our normal samples
is unknown or cannot be explicitly computed. To address this issue, we will leverage
conformal inference to transform the outputs of our one-class classifier into p-values,
enabling us to test the null hypothesis effectively.

Consider that we have trained our scoring method § on a training dataset X, =
{z1,29,..., 20} Let Xey = {@p11, Tnya, ..., ZTon } denote our calibration set. For a
test sample Xo,,4+;, we compute the marginal p-value[1] as follows:

o 1 [{ Xy € Xea t 8(Xntj) < 8(Xopgi) }
pi =
n—+1

)

where the numerator adds one to account for the test sample itself, ensuring robustness
in finite sample settings.

3 Experiments

We will experiment with various one-class classifiers on problems involving images.
To ensure a fair comparison between these methods, we will construct marginal test
p-values. This approach eliminates the need to set arbitrary thresholds, which can vary
across models, and provides a consistent evaluation framework. We will implement
one-class methods on the MNIST dataset, which consists of grayscale images of hand-
written digits.

3.1 Problems:
We detail the two settings we consider:

* 1) One VS All: One digit is treated as the normal class, while images of other
digits are considered anomalies. This setup is commonly addressed in numerous
papers on anomaly detection for images.

* 2) Al VS One: One digit is treated as the anomalous class, while images of other
digits are considered normal. This is the setting we propose. Unlike learning the
distribution of a single digit, the model must learn the distribution of multiple
digits, making the task more complex.



3.2 Models

For problems 1 and 2, the same algorithms can be applied. For instance, Deep One-
Class Classification[5] attempts to map the normal data distribution into a hypersphere
of lower dimensionality using neural networks, effectively isolating anomalies as points
lying outside this hypersphere. They also propose mapping normal data as close as
possible to a single point in a latent space. The anomaly score is then defined as the
distance of the data point’s mapping to this center. To classify anomalies, a threshold
must be set: any test observation with a distance exceeding this threshold is considered
an anomaly. In the following, when referring to the Deep One-Class Classifier, we will
focus on this specific last method. DROCC[3] can also be applied. During training, a
classifier is trained to correctly identify normal data as normal. Simultaneously, gradi-
ent ascent is performed on generated samples to create adversarial examples that aim to
mislead the classifier. The overall loss combines two objectives: correctly classifying
normal data as normal and generated abnormal data as abnormal. These models pro-
vides a conformity score for the entire image. Generative models also can be employed.
The approach for using a VAE as an anomaly detector is as follows: the VAE is trained
exclusively on normal samples. For a test sample, the model generates a reconstructed
version of the input. If the reconstruction loss for the entire image is significantly high,
it indicates that the model has not encountered this type of image during training and is
unable to reconstruct it effectively. Such a sample can then be considered anomalous.
For GANSs, the methodology is similar but with some differences. In a basic GAN, we
lack direct control over the generated samples and we still rely on evaluating the recon-
struction loss. Using models like AnoGAN [7], we first train a basic GAN on normal
samples. Then, for a test sample, gradient descent is performed in the latent space to
identify the latent vector that best generates the given test sample. This process aims
to minimize two key differences: the difference between the test sample and its gen-
erated counterpart, and the difference between the outputs of an intermediate layer
of the discriminator for the generated image and the test image. This dual objective
helps ensure a more accurate representation of the test sample in the latent space. The
challenge with this approach is that for N test samples, [V separate optimizations are
required to find the best latent vector for each sample. As [N grows large, this process
can become computationally prohibitive due to the extensive optimization workload.
To address this limitation, the authors of AnoGAN introduced F-AnoGAN [6], a more
efficient version of AnoGAN. In F-AnoGAN, an additional neural network is trained
after the basic GAN is trained. This network, which acts as an encoder, maps an input
image directly to its latent vector. The encoder is designed to minimize two objectives:
the difference between the input sample and its generated counterpart, and the differ-
ence between the outputs of an intermediate layer of the discriminator for the input
and generated images. This significantly reduces the computational cost compared to
performing gradient descent for each test sample.

3.3 Results

Initially, we will assess the models’ performance using the ROC-AUC score to evalu-
ate their accuracy and effectiveness. The ROC-AUC score ranges from O to 1, taking



into account both the False Positive Rate and the True Positive Rate. A higher ROC-
AUC score implies better model performance, indicating a greater ability to correctly
distinguish between positive and negative instances. Following this, to conduct a more
detailed analysis of model rejections, we will use p-values with a significance threshold
of 5%. Any image with a p-value below this threshold will be classified as an anomaly.
We will present tables summarizing results for selected digits classified as either nor-
mal or anomalous and analyze the overall rejection rate, including both anomalies and
normal samples.

We will present results specifically for digits O and 7, considered as normal in the
first setting and anomalous in the second setting. Complete results are available on
our GitHub repository, where we have developed a web interface using Streamlit to
facilitate result visualization.

3.4 One vs All framework
3.4.1 ROC-AUC scores:

VAE CVAE DeepSVDD DROCC f{-ANOGAN

Normal digit

0 0.995  0.995 0.989 0.944 0.967
1 0.999 1 0.995 0.927 0.999
2 0.927  0.930 0.913 0.772 0.834
3 0.951  0.943 0.866 0.558 0.880
4 0.961  0.946 0.931 0.823 0.865
5 0.967  0.954 0.879 0.568 0.856
6 0.989  0.994 0.975 0.849 0.933
7 0.969  0.962 0.949 0.911 0.897
8 0.897  0.891 0.917 0.881 0.861
9 0.970 0.974 0.958 0.814 0.920

In this initial framework, the ROC-AUC score indicates that the best-performing mod-
els are the VAEs using the reconstruction loss. Their results are quite impressive. The
Deep SVDD model comes after, then DROCC and f~-ANOGAN that performed the
worst. Limited time was spent on fine-tuning the models, so the results may vary with
further optimization. We ensured that the training time for each model was kept com-
parable to maintain fairness, which could explain why f~ANOGAN underperformed.
This model is particularly resource-intensive, as it requires the training of three neural
networks.

3.4.2 Study of the rejection rates with a threshold of 5%
Rejection Rate for Normal digit 0



Normal Deep SVDD VAE CVAE f-ANOGAN DROCC

)

.
aq

.

0 Yes 4.6% 47%  4.6% 3.6% 4.5%

1 No 99.8% 99.3% 97.2% 100.0% 98.8%
2 No 98.0% 99.4% 100.0% 91.3% 77.6%
3 No 97.0% 99.4% 100.0% 84.6% 46.3%
4 No 99.6% 99.7% 99.8%  98.8% 66.2%
5 No 95.4% 98.5% 99.6%  82.7% 62.0%
6 No 86.0% 932% 96.8%  69.9% 60.1%
7 No 100.0% 99.0% 97.5%  98.8% 94.8%
8 No 82.4% 98.7% 99.2%  85.7% 25.6%
9 No 98.7% 99.3% 985%  91.2% 59.3%

Our strategy effectively controls the False Anomaly Rate at a target of 5% while suc-
cessfully rejecting other digits.

Rejection Rate for Normal digit 7

Digit Normal Deep SVDD VAE CVAE f-ANOGAN DROCC

0 No 86.9% 99.9% 100.0% 98.4% 94.7%
1 No 84.5% 18.4% 18.0%  88.7% 86.6%
2 No 93.8% 993%  991%  94.1% 95.4%
3 No 87.1% 992%  997%  95.4% 78.7%
4 No 79.4% 87.6%  96.6%  66.5% 52.0%
5 No 93.3% 9.8%  999%  96.4% 77.7%
6 No 99.5% 100.0% 100.0% 99.9% 99.2%
7 Yes 5.7% 5.7% 5.6% 6.2% 6.2%

8 No 61.8% 99.1% 99.8%  86.3% 49.0%
9 No 16.7% 551%  754%  39.3% 9.5%

The results are similar to the previous ones. However, the False Anomaly Rate slightly
exceeds our threshold. This suggests the need for a larger validation set to capture a
more comprehensive range of normal scores.



3.5 All vs One framework
3.5.1 ROC-AUC scores:

VAE CVAE DeepSVDD f-ANOGAN DROCC
Anormal digit

0 0955 0.977 0.678 0.823 0.824
1 0.386  0.209 0.909 0.359 0.908
2 0.962  0.967 0.702 0.966 0.669
3 0916  0.968 0.579 0.870 0.740
4 0911  0.940 0.672 0.858 0.425
5 0.945  0.969 0.565 0.899 0.567
6 0.946  0.945 0.570 0914 0.662
7 0.664 0.791 0.663 0.676 0.531
8 0.938  0.966 0.419 0.907 0.431
9 0.729  0.742 0.460 0.597 0.333

In this second framework, the ROC-AUC scores are less impressive compared to the
previous framework. This is expected, as the problem is more complex due to the in-
clusion of multiple digits as normal classes during training. Nevertheless, the best-
performing models remain the VAEs based on reconstruction loss. These models out-
perform all others across most digits, except for one specific digit, the 1, where they
struggle significantly. For this particular digit, Deep SVDD and DROCC perform rela-
tively well but show weaker performance on the other digits.

3.5.2 Study of the rejection rates with a threshold of 5%

Rejection Rate for Anormal digit 0

Digit Anormal Deep SVDD VAE CVAE f-ANOGAN DROCC

0 Yes 39.8% 64.2% 86.5% 23.0% 36.0%
1 No 66.7% 04%  05% 03% 0.0%
2 No 7.6% 7.0%  65%  9.3% 11.6%
3 No 5.9% 56% 6.6% 5.1% 6.8%
4 No 10.6% 14%  29%  2.7% 3.7%
5 No 13.5% 6.8% 13%  6.4% 5.7%
6 No 9.2% 42%  2.5%  4.6% 8.8%
7 No 13.6% 1.2%  3.1%  2.0% 0.2%
8 No 3.0% 11.6% 11.8% 9.4% 3.8%
9 No 3.3% 2.2% 1.9% 1.0% 0.8%

The best-performing models remain the VAEs, particularly the Convolutional VAE. It
effectively rejects anomalous digits while correctly preserving normal ones. Although
the threshold is not strictly adhered to, the rate is close to the target. Other models
perform less effectively compared to the VAEs.



Rejection Rate for Anormal digit 7

Digit Normal Deep SVDD VAE CVAE f-ANOGAN DROCC

0 No 25.0% 22%  24% @ 2.4% 16.6%
1 No 72.6% 02% 02% 0.2% 0.1%
2 No 15.1% 79%  18%  1.9% 4.3%
3 No 14.3% 49%  65% 3.9% 9.7%
4 No 20.4% 22%  32%  3.0% 0.6%
5 No 17.2% 6.7%  17%  5.6% 2.7%
6 No 13.4% 3.3% 1.8%  3.8% 0.6%
7 Yes 40.3% 12.1% 27.8% 8.6% 3.9%
8 No 6.5% 10.6% 11.8% 7.8% 0.7%
9 No 11.8% 1.9% 2.1% 1.5% 0.3%

As expected, the VAEs once again emerge as the best-performing models. They effec-
tively preserve normal digits while accurately detecting the anomalous digit. In this
case, where the abnormal class is digit 7, the other models also perform well, showing
better results compared to the scenario where the abnormal class was digit 0.

4 Conclusion

While models strongly perform in One-vs-All Setting, they struggle a bit more with
the All-vs-One Setting. VAEs reconstruction-based perform better than other models
across all settings. The introduction of test p-values allows us to standardize the thresh-
olding process, eliminating the need to define separate thresholds for each model. This
approach enables the use of a unified threshold across all models while controlling the
false anomaly rate.

5 Annexe: study of latent spaces

Our models considered latent spaces, such as those provided by Variational Autoen-
coders (VAEs), and projection spaces, exemplified by Deep SVDD. For VAEs, we aim
to observe that the anomalous class (or classes, depending on the framework) resides
significantly distant from the normal class (or classes) in the latent space. In the case
of Deep SVDD, our objective is for the center of the projection space to align closely
with the true normal class (or classes).

5.1 VAE

For the VAEs, we utilized a 2-dimensional latent space to facilitate easy visualization.
We only consider Linear VAEs for this experiment. In both frameworks (All vs. One
and One vs. All), we conducted 10 experiments for each class, considering it alternately
as normal and anomalous. For simplicity and brevity, we will present two results that
are representative of the majority.



(a) Normal class 0 (b) Normal class 7

Figure 1: Visualization for the One vs All framework.

For this given problem, our VAE works better than the FFANOGAN model. H

In the One vs All framework, results shown in Fig.1 reveal that all digits, including the
anomalies, are mapped close to the origin, with little distinction between them. This is
not the desired outcome. The goal is to have one cluster for the normal digit and another
separate cluster for all other digits. This behavior can be attributed to the assumptions
made about the latent space during the training of the VAE, where we assume the latent
space follows a Gaussian distribution. As a result, the encoder is trained to map all
data points to this distribution. However, for our problem, it is the decoder that plays a
crucial role in this process. The decoder is specifically trained to reconstruct the normal
digit, and thus, for any position in the latent space, it will generate a reconstruction of
the normal digit. It does not have the capability to accurately reconstruct anomalous
digits.



(a) Normal class O (b) Normal class 7

Figure 2: Visualization for the All vs One framework.

For the second framework, All vs One, some results are shown in Fig.2. In this case,
we observe distinct clusters of normal digits in the latent space, generally distributed
around the origin. This behavior aligns with the hypotheses underlying the training
of the VAE: the entire latent space is expected to follow a Gaussian distribution, and
each normal digit corresponds to its own Gaussian distribution with specific parameters
for mean and variance. This explains the formation of distinct clusters for the same
digits. Conversely, anomalous digits are consistently mapped near the center of the
latent space. Since the decoder is not trained to reconstruct these anomalous digits, it
instead generates reconstructions of normal digits. This observation reinforces the role
of the decoder as the principal component for anomaly detection using VAEs as we
know that these models work well for the problems we considered.

5.2 Deep One-Class Classifier

In this model, we project our images into a 32-dimensional space, which makes it
challenging to compare the sample projections to the center directly. To address this,
we employ T-SNE to map the projections into a 2-dimensional latent space, enabling
visualizations similar to those used for the VAEs.
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(a) Normal class 0 (b) Normal class 7

Figure 3: Visualization for the One vs All framework.

The results in Fig.3 for the One vs All show that both normal and anomalous digits
are well separated in the T-SNE space. Furthermore, we observe that the center lies
within and approximately at the midpoint of each normal digit cluster. These results
are satisfactory overall. However, it would be more desirable if the anomalies were
not grouped into distinct clusters, as this could further enhance the separation between
normal and anomalous digits.

(a) Normal class 0 (b) Normal class 7

Figure 4: Visualization for the All vs One framework.

The results in Fig.4 for the All vs One framework show that each digit resides in the
same overall cluster within the latent space. The center is not particularly far from
the anomalous class, which may explain why the Deep SVDD performs poorly in this
framework. All digits are mapped to overlapping regions in the latent space, with the
exception of digit “one,” which forms a distinct sub-cluster within the larger cluster.
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