The Theory behinds Denoising Diffusion
Probabilistic Models

Samy Vilhes
December 2024

1 Introduction

Denoising Diffusion Probabilistic Models (DDPM), introduced in the paper
DDPM [2], are powerful generative models designed to rival state-of-the-art
methods such as Variational Autoencoders (VAE) [3], Generative Adversarial
Networks (GAN) [1], and regressive models like Normalizing Flows. These mod-
els achieve high-quality sample generation by iteratively denoising data from a
Gaussian noise process, leveraging a diffusion-based framework that provides
a more stable training process and better mode coverage compared to GANs
while maintaining competitive generation quality. DDPMs are composed of a
forward process and a reverse process.

2 The Forward Process

Let us consider x(as a sample, such as an image. The forward process involves
progressively adding noise to xg over multiple steps, effectively transforming it
into a noisy version through a series of stochastic operations:

g —> X1 —> Ty —> - —> T

where T denotes the total number of steps in the process. We choose T' to
be sufficiently large such that x7 is pure noise. This enables the transformation
of a complex data distribution into a simple distribution.

Mathematically, this process can be expressed as:

Ty =1 = Bwi—1+/ Biey

where f3; represents a variance scheduler, and ¢ ~ N(0,) is Gaussian noise.
When discussing distributions, if we denote g(z¢) as the distribution of our data,

we have:
q(zy | me—1) = N(z43 /1 — Bray—1, Be]).

+ Noise + Noise + Noise

Complex distribution Simple distribution

Figure 1: Forward Process

and:

T
q(z1.r | 20) :H (x4 | 21-1)

While we choose T to be large, performing T' sequential transformations is
computationally inefficient. Fortunately, there exists a formula that allows us
to directly transition from x(to x; in a single step.

= Vauzo + V1 — ae (1)

e ¢~ N(0,I).

(We let the proof in Section 8.1)

Thus:
q(z¢ | 20) = N(z¢; vV awao, (1 — ap)l).

With this equation, we conclude the theoretical explanation of the Forward
Process. However, this process only transforms an observation into pure noise.
The ultimate goal is to achieve the reverse: starting from pure noise, generate
a realistic sample by applying T transformations in the opposite direction.

3 The Reverse Process

The joint distribution pg(xg.7) is called the Reverse Process. It is defined as a
Markov Chain with learned Gaussian transition starting at p(zr) = N (x1;0, I):

po(wor) = plar) [[po(we—r | 1)
t=1

with:
po(Ti_1 | wt) = N(xp_1; o(ze, 1), Lo (24, t)) being the reverse distribution.

We know that the reverse process follows a Gaussian distribution because (; is
chosen to be small enough, ensuring that the added noise in the forward process
is minimal. Consequently, the reverse process also involves adding noise, albeit
a different type, to reconstruct the original sample.

The core objective of diffusion models is to learn the parameters of the reverse
distribution, ug(x,t) and g (x4, t). Once these parameters are learned, we can
iteratively transform a noisy image into a progressively less noisy one, ultimately
reconstructing a realistic sample:

T — X1 —> Xr—2 — - —> Xo

+ Noise + Noise +Noise

Figure 2: Reverse Process

To learn the reverse process, we aim to maximize the log-likelihood E ;) [log pe(x)].
However, since this quantity does not have a closed form, we instead maximize
its variational lower bound (VLB):

(z1.1 | w0)

q
. | > _E 1 = VLB 2
a(zo) [108 Po ()] > q(ZO:T){ o8 po(zo.T)])

(We let the proof in Section 8.2)

The term on the right, VLB, represents the variational lower bound. In practice,
we minimize its negative, i.e., —VLB = Ly1,p.

[hus: (ED)
q(T1.T | To

=E,(z.. log = ————=

Lvip q(o.T)[J po(To.1) }

T
= Ey(aor) | Pxr(q(zr | 20) || po(xr))+ Y Dxr(q(@e1 | 21, 20) || po(zio1 | 220))
t=2 (3)

(We let the proof in Section 8.3)

Furthemore: ~
q(@e—1 | @, 20) = N (2415 fue (4, T0), BeI) (4)

With: 1-a

~ —

/Bt = 51517]:1

—
and: _ LA
fia(4, o) = \/at—iﬂtxo n NG *flt—l)xt
1— (673 1-— (673

(We let the proof in Section 8.4)

In this way, both red and blue terms represent Kullback-Leibler divergences
between Gaussian distributions. As a result, we can derive analytical expressions
for these two terms.

We denote by:

o Ly =red
e [.; 1 = blue
o [p=
Thus:
Lvis = Eg(z.0) [LT + L+ Lo}

During the training, the term Lz can be ignored because it contains no learn-
able parameters (pg(z7) is pure noise)

Taking a closer look at L;_1, we leverage the form of g(x;—1 | a4, z9) to make
an assumption about the form of pg(zi—; | z¢). Specifically, we assume that
they follow a similar distribution. However, the mean parameter of g is the only
term we cannot compute directly, as it requires knowledge of the original input

image xg.
Thus, we suppose:

po(wi1 | we) = N (w413 po(we, 1), Bel)

Then, the primary objective is to learn ug (x4, t), ensuring that it closely approx-
imates fi;(x¢, zo) by minimizing the KL Divergence between these quantites:

Dxr(q(@e—1 | ¢, 20) || poli—1 | 21))

= DkL (N(-Tt—l;.at(ztamo)wétl) I N(It—l;ﬂe(l’t’t)ﬁﬂ))

1 1—a
Tt)~ el ®

(We let the proof in Section 8.5)

Our goal is to estimate fi;(x¢, xo), and we know its form is given by:

T Vo (l — ay—
e (T, 20) = & }5t$0+ el = - 1)96t
l—at].-th

During the denoising process the only thing we do not know in fi;(x¢, zo) is zo.
We will use the analytical form of fi;(z¢,20) to suppose the form of pg(z¢,t):

_ \/dtflﬁtme Vor(l—ay—q)

1—a 0t 1-a ™

Ho (xh t)

Here, we estimate xg by z¢ the prediction of the input sample by the model.
Then:

Dxr(q(mi—1 | e, 20) || po(we—1 | 2¢))

1 1-a N)
s |lpe (e, t) — fir (24, 0
S ey e t) — e o)l

B - g1

—[lzo — ol[3 (6)
G{t)

(We let the proof in Section 8.5)
Furthermore, using 1:

x — /1 — aye

Vo
But during the denoising process, we do not know the noise € used to noise the
model. Then we consider:

o —

Tt — \/1 — Qip€p
VO

Where ¢y is the estimation by the model of the true initial noise €. Thus:

Ty =

Dxy(q(@e—1 | @, 20) || po(wi—1 | 1))

By - @1

1
5 - ||lzg — 2ol|3
20— a1

)

s
2 Bt(l - dt)at

(We let the proof in Section 8.5)

lleo — eol [(7)

During training, we focus solely on minimizing the simple term:
2
L = |leg — €oll3

Thus, the model, given x; and t tries to estimate the input noise € sampled.

4 The training

We will detail the training for a single sample:

Algorithm 1: Training Procedure for Diffusion Models

Input: Training dataset, number of timesteps T', model ¢y

1 while not converged do

2 1. Sample xg from the training set.

3 2. Sample a timestamp t ~ Uniform({1,...,T}).

a 3. Sample noise € ~ A (0,1) with the same shape as zg.
5 4. Construct x; using z; = /ayxo + /1 — age.

6 5. Feed x; and t into the model ey (x4, t) to predict e.

7 6. Compute the loss: £ = ||eg(ws,t) — €||3.

8 7. Perform backpropagation to update 6.

9 end

Output: Trained model parameters 6.

5 Details

5.1 Architecture

We will use for model the U-Net architecture [unet]. It will takes as input x;
and ¢ and tries to predict € the input noise.

=» conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
= conv 1x1

Figure 3: U-Net architecture

5.2 Hyperparameters

e We assume 7' = 1000 noise steps.

e 3, increases linearly from 3; = 10~ to B = 0.02.

The time information is provided to the model using Sinusoidal Positional
Embeddings, as introduced in [4].

The authors empirically found that replacing Bt with 3; alone yields sat-
isfactory results.

6 The Generation process

To generate new digits, we are interested the quantity:

po(zi1 |) = N (2—1; po(ze, 1), By)

Where: _ LA
TR Vo (1 — oy
,uo(ilit,t)z Q' iﬂtx9+ t(. t 1)%:
1-— Ot 1-— Ot
We saw that:
Tt — 1-— Q1€p
Tog=—""F7—""
Vv
Thus:

Ho T, - \/O[_t t m

(We let the proof in Section 8.6)

€9) (8)

Then we will use the reparameterization trick to compute x;_1, the denoised
version of z;, using the following formula:

21 = po(ae,t) + Bz with z ~ N(0,1)

Algorithm 2: Generation Procedure for Diffusion Models

Input: Number of steps 7', noise schedule {3;}_;, and model pp(z¢,1).
1 1. Initialize: Sample z1 ~ N(0,).
22 Fort=T,T—-1,...,1:
e Sample z ~ N (0,1) if t > 1, else set z = 0.

e Compute x1_1 = pg(at,t) +/Bez.

3. Return: z.
Output: Generated sample zg.

7 Experiments

We implement a basic DDPM with a U-Net based architecture for the Fashion-
MNIST Dataset.

AU

Figure 4: Fashion-MNIST Generation

The code can be found here:
https://github.com/vilhess/codes/tree/main/ddpm

8 Proofs

8.1 proof of 1
We will show by induction:

Ty = \/C_ktxo + \/]. — Qi€

where:

_ t
® O = H5:1 Us,

® iy = 1—- ﬂh
e ¢~ N(0,1).
We have:
Ty = /1= Biwi—1 + v/ B
for t = 1:

1 =+/1=Bixo + /Pre1
= /o129 + \/1 — (X1€1
=V C_YlCEO + \/1 — Q1€

So it is true for t =1
Let’s suppose it is true for ;. Then we need to show:

Tipr1 = Q170 + /1 — Qg€
‘We know:

Tip1 = /1 = Beg1®e + v/ Pry1€e41
= /1= Bit1(Varzo + VI — ave) + /Bry1er1

= Va1 (Vo + VI — age) + /1 — a4

= JarivVazo + VarivV1 — ae + /1 — appi€41

= Va1zo + o V1 — ae + '\/1 — Q416441

We have:
o VoV —ae ~N(0,ap41(1 — au)I)

b mqﬁﬁ»l ~ N(07 (1 - Oét+1)_[)

So summing blue + red:

~N(O, (epqr (L — o) + 1 — ovq1))
~N(0, (a1 — Qg1 + 1 — agpa) 1)
~N(0, (1 — ar+1)1)

Thus:

Ter1 = V@170 + Va1V — age + /1 — i€t
= V4170 + /1 — Qyy1€

So we finish the proof of 1 by induction.

8.2 proof of 2

Eq(ao) [108 1o(2)] = Eq(ay)

> Eq(mo:T) [log

q
> _EQ(Z'U:T) {log

So we finish the proof of 2.

log /pe(xo:T) dan}

(@11 | 7o)
r q(xlzT | l’o)
_Eq(«”l:Tcho) [log M]]

po(wo.1) }

log/(J(»TLT | zo) dxl:T]

Q(IlzT\ﬂio)[

logE

q(z1.1 | o)
(»Tl:T | xo)}

Do (‘rO:T)

10

8.3 proof of 3
[Q(xl:T \ SEO)]
L =E, ., log ————~
VLB e(@or) L 8 po(To.1)
[Ty g | ze) }
po(ar) [T po(zi—1 | 2¢)
iy a(ee | 2e-1) }

T
[Lizi po(@i—1 | 22)

- T
E Q(l’t | !Et—l)]
= Zo: lo zr) + lo | I RS Mk ik S
Q(O,T) I gp@(T) gt - 9(111&71 ‘ -’Et)

= Eq(IO:T) log

= Ey(zo.r) | — logpo(zr) + log

_ T
q(zs | w4-1)
L t=1

_ T
q(zy | 24-1) q(z1 | wo)
_E _1 log —————2% 4 log —————=
awor) | ogpe(rr) + ; %8 polwi [21) 8 polao | 21)

Furthermore:

q(xy | x—1) = q(xy | ®—1,20) (because this is the noise processus)

_ Q(xuﬂﬁt—l,xo)

(using Bayes Formula)
q(2t-1,0)

_ (@, w1, m0) (e, m0) (o)
q(z¢,) q(zo) q(zt-1,70)

q(z+ | zo)

(using Bayes Formula)
q(x-1 | o)

= Q(xtq | CUt,CUo)

Thus:

11

[gz | 24-1) q(z1 | o) }
Lvis = Egagp) | — logpo(ar) + 3 log Lot IT=L o0 DAL T0)
VLB q(zo.7) i g po(zT) Z gpe(ivtq | z2) polz0 | 21)
I q(@e—1 | 2, w0) qlay | o) q(z1 | wo)]
=FE (2. —lo xr) + lo
aleor) | gpo(er) ; % pa@io1 | @) gl | o) po(wo | z1)
[q(we—1 Il‘t,xo 4 | o) q(x1 | wo)]
=Eq(zom | —lo xr)+) log + > log +1lo
alwor) | 8po(er) ; po(xi—1 | 24) Z q(x-1 | o) po(wo | 1)
E [logp(ar +Z o8 q(zi—1 | 24, 0) o q(zr | x0) o q(w1 | 20)]
a(@o.r) | =" po(wi—r | @) q(z1 | o) po(To | 1)
- T
q(zr | w0) q(zi-1 | m¢, 20) q(z1 | 0)]
=E, gy | ——= + log m——""""2 _logq(xy | zg) + log —————~
q(zo.T) _Ingg(l'T) ; g p@(xt—l | xt) gq(1 | O) gpQ(xO | 1‘1)
[q(zr | z0) T q(ze_1 | ¢, 0)
_]E T 0 + 10 t—1 ty L0 o 10 T T :|
q(zo:T) _logp9($T) Z g pa(l‘t—1 | xt) gp0(0 ‘ 1)

t=2

So we finish the proof of 3.

8.4 proof of 4

Firstly, we introduce:

Qg 1 -1
(1-0% +]-_atl)
<OétOétO_ét_1+10ét>< 17C_l{t >
S\ —a)l =)) \ Bl — @)

(1)

1—oy

B

:Bt

12

And:

(\/OTtl't N Mﬂ:e)Bt

ﬂ<xt,$0) 1-— Qg 1-— O_tt 1

_ <\/07t$t n @%)/B 1—a;

1—at].—07[t71 1—6Zt

1- 641‘,—16 LT n 1- &t_lﬂ Vai_1xo

1—6ét tl—at 1—6ét tl—dtfl

11—y Oi_1T
Zit, 1\/at$t+7t 1 Oﬁt
(673 l—O[t

1—

o (1 — ay— oy —
vEll-an) L vas
1*O[t I*O[t

Thus:

q(xi—1,x¢ | o)

q\Te— T, To) =
(@i—1 | @, 20) 2(s [20)

_ q(xe | 2¢—1,20)q(xs-1 | T0)
q(z¢ | wo)

= q(x | (Et_l)M (red because noise process)

We know:
o red = N(zy; /1 — Bexy—1, Bil).
o blue = N (w; /@120, (1 = @-1)1)
. = N(z; Vayzo, (1 — ay)I)
Then:

q\Ti—1 | To
Q(iEt—l | $t71'0) = (I(-Tf, ‘ -77t—1)w

_ @xo)z

X exp [_ ;(Opt — @wt1)2> n (241 — \/m:xo)z B (2

1—oy 11—

13

1*O[t

2 2 2 = - 2 = ~
1/ x; — 2z /axi—1 + n Ti_q — 2T4—14/0t—120 + Q41T xf — 2x4y/ Oz + atx%
2

1— oy 11— 1— oy

1— oy 11—

a 1 > - 2%_1(96“/047 + \/o‘ﬁxo) +C’(xt,x0)]>

= exp

Il
@

”
ie)
7N\ VR L
[
DO | =
&
N
|
7 N
—
|
)
[t
|
Q
o~
L

DN =
T |

1[22 | — 2z fu (e, 2
exp <— S| == t~1'ut(! O)] + C@tﬁo))

2] B
This corresponds to the probability density function of a Gaussian distribution,
given by:

N(l‘t_l; /lt(l't, .TO), /Btl)a
Then we finish the proof of 4.

14

8.5 proofs of 5, 6, 7

Dk (N(mt—ﬁﬂt(xtaxo)aﬁtl) I N(xt—ﬁ,ué(xtat)wét]))

N 1 -1 _ -)
= N (uCamo) o) [5 log2m — 5 log (det 1) — 5 (wemr — fir(we,20)) " By I (w121 — fr(e. m0)

2

N 1 ~ 1 -
+ 5 log 27 + 3 log (det BtI) + 5(%,1 — Me(it,t))T5;1[($t71 — ,[j,g(xt7x0))

1
- §Ext,1~N<ﬁt(xt,$o)7/§t1

) |:(xt1 — oo,) By (w1 — o, 20))

— (21 — ﬁt(xtvxo))TBt_ll(xt—l — fut (2, x0))

1 -
= 5 A (o) 1) [(f”t—l D) (O W(“t’x‘)))}

1 . 5 -
B §Ewt—1NN(ﬂt(wt,I0)vﬂ~t1) |:(xt1 o Mt(xt’xo))TBt lj(xt71 - ut(xt’xo)):|

N |

((ﬂt(ﬂct,ﬂUo) — M@(%J))Tgfll(l]t(%‘t,xo) — po(ze, 1)) + tr(5t16t1)>
; (:Ua xy, T ,Ue T, t))Tﬁt_ll(MQ(xt7t) - /.tg(l't,t)) + tT(Bt_llétI)> (usjng property 9)
1/1 T, . 1
2<~ fie (1, T0) — po (e, 1)) (Mt(ft,xo)ﬂe(wtat))JrJ) -5/
Bt 2

L (el w0) — o e t) " (e (e, 20) — pron)

25t
1 1—ay
=) — [, 2 oof of 5
25, (1 — Gy 1) o (e, t) — fie(@e, wo)llz (pr)
1 11—y VO 151& Vo (l —a—q) VO 1ﬁt Vor(l—ou—1)
-5 _ H o+ _ Ty — - — xt”g
25t(1—at,1) 1—Oét 1—Oét l—at 1—0475
_ 1 1-— @t H V at 1515 \V4 dt*l/th ||
26,(1—a1) 1-a 1—a, 2

R Vo1t B 2
_2@(175&_1)” 1—a (2o — o) lfz

_1 -1 - Py
2(1—a—1)(1-

&) l[zo — x0||3 (proof of 6)

Furthermore, using 1:

As we use xg as an estimation of xg, we will consider:

Tt — 1— 65,569
Vo

Where the only unknown term is eg. Thus:

Ty —

Dxy, (N(xt—l;ﬂt(xt,l“o),@t) I N(fﬂt—l;lﬁe(ﬂﬁtat),ﬁt))

a1 B

(a0 —a)

llzg — o3

N =

1 dtfl'ﬁt th\/]-_dteg_wt_\/]-_dtGHQ
2(1—a, 1)(1—ay) Var Va7
1 01 1-a

_ 2t Qg1 B H at(ﬁ—Go)Hg

2(1—a-1)(1—a) Var

BE a1 (1 — ay)

-1 e — ol 3
25:&(1 - O_Zt) (1 *@tfl)c_“t ol
S) R SR
28, (1 — 1) (1 — ag)ay ?

| =

W
2 Bt(l - O_Zt)at

We recall this property:
Let: X ~ N (u,X) Then:

lle —eql|3 (proof of 7)

T

E|(X —u)"AX —u)| = (u—u)" A(u—u) + tr(A%)

8.6 proof of 8.6

We saw: _ LA
ol 1) = YOOty YO O],
1-— it 1-— it
We have:

Tt — 1-— Q1€p
Vo

Ty —

16

Thus:
 Vai1B Vai(l—a;1)
= To +

1—oy 1—o

po(xe, t) Tt

Tt

_ Vb (xf, - Wee) L Va1 = an)

1—dt 1_dt

RV +\@(1—o‘et_1)x _VI—aa@ap
(-a)va ' 1-a ' Va(i-a)

- xt(@%ﬁ% " @gl—_aft_l)) B \/ai\%*at “

B V(1 - atl)) 3 Be y
(1—ay) /o 1—ay Vor/T—ay

So we finish the proof of 8.

References

[1] Tan J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML]. URL: https://arxiv.org/abs/1406.2661.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Prob-
abilistic Models”. In: CoRR abs/2006.11239 (2020). arXiv: 2006 . 11239.
URL: https://arxiv.org/abs/2006.11239.

[3] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes.
2022. arXiv: 1312.6114 [stat.ML]. URL: https://arxiv.org/abs/1312.
6114.

17

[4] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.

18

