
The Theory behinds Denoising Diffusion

Probabilistic Models

Samy Vilhes

December 2024

1 Introduction

Denoising Diffusion Probabilistic Models (DDPM), introduced in the paper
DDPM [2], are powerful generative models designed to rival state-of-the-art
methods such as Variational Autoencoders (VAE) [3], Generative Adversarial
Networks (GAN) [1], and regressive models like Normalizing Flows. These mod-
els achieve high-quality sample generation by iteratively denoising data from a
Gaussian noise process, leveraging a diffusion-based framework that provides
a more stable training process and better mode coverage compared to GANs
while maintaining competitive generation quality. DDPMs are composed of a
forward process and a reverse process.

2 The Forward Process

Let us consider x0 as a sample, such as an image. The forward process involves
progressively adding noise to x0 over multiple steps, effectively transforming it
into a noisy version through a series of stochastic operations:

x0 → x1 → x2 → · · · → xT

where T denotes the total number of steps in the process. We choose T to
be sufficiently large such that xT is pure noise. This enables the transformation
of a complex data distribution into a simple distribution.

Mathematically, this process can be expressed as:

xt =
√
1− βtxt−1 +

√
βtϵt

where βt represents a variance scheduler, and ϵt ∼ N (0, I) is Gaussian noise.
When discussing distributions, if we denote q(x0) as the distribution of our data,
we have:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI).

1

Figure 1: Forward Process

and:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1)

While we choose T to be large, performing T sequential transformations is
computationally inefficient. Fortunately, there exists a formula that allows us
to directly transition from x0 to xt in a single step.

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (1)

where:

• ᾱt =
∏t

s=1 αs,

• αt = 1− βt,

• ϵ ∼ N (0, I).

(We let the proof in Section 8.1)

Thus:
q(xt | x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I).

With this equation, we conclude the theoretical explanation of the Forward
Process. However, this process only transforms an observation into pure noise.
The ultimate goal is to achieve the reverse: starting from pure noise, generate
a realistic sample by applying T transformations in the opposite direction.

2

3 The Reverse Process

The joint distribution pθ(x0:T) is called the Reverse Process. It is defined as a
Markov Chain with learned Gaussian transition starting at p(xT) = N (xT ; 0, I):

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1 | xt)

with:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) being the reverse distribution.

We know that the reverse process follows a Gaussian distribution because βt is
chosen to be small enough, ensuring that the added noise in the forward process
is minimal. Consequently, the reverse process also involves adding noise, albeit
a different type, to reconstruct the original sample.
The core objective of diffusion models is to learn the parameters of the reverse
distribution, µθ(xt, t) and Σθ(xt, t). Once these parameters are learned, we can
iteratively transform a noisy image into a progressively less noisy one, ultimately
reconstructing a realistic sample:

xT → xT−1 → xT−2 → · · · → x0

Figure 2: Reverse Process

To learn the reverse process, we aim to maximize the log-likelihood Eq(x0)[log pθ(x)].
However, since this quantity does not have a closed form, we instead maximize
its variational lower bound (VLB):

Eq(x0)

[
log pθ(x)

]
≥ −Eq(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)

]
= VLB (2)

3

(We let the proof in Section 8.2)

The term on the right, VLB, represents the variational lower bound. In practice,
we minimize its negative, i.e., −VLB = LVLB.
Thus:

LVLB = Eq(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)

]

= Eq(x0:T)

[
DKL

(
q(xT | x0) || pθ(xT)

)
+

T∑
t=2

DKL

(
q(xt−1 | xt, x0) || pθ(xt−1 | xt)

)
− log pθ(x0 | x1)

]
(3)

(We let the proof in Section 8.3)

Furthemore:
q(xt−1 | xt, x0) = N

(
xt−1; µ̃t(xt, x0), β̃tI

)
(4)

With:

β̃t = βt
1− ᾱt−1

1− ᾱt

and:

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

(We let the proof in Section 8.4)

In this way, both red and blue terms represent Kullback-Leibler divergences
between Gaussian distributions. As a result, we can derive analytical expressions
for these two terms.
We denote by:

• LT = red

• Lt−1 = blue

• L0 = green

Thus:

LVLB = Eq(x0:T)

[
LT + Lt−1 + L0

]
During the training, the term LT can be ignored because it contains no learn-
able parameters (pθ(xT) is pure noise)

Taking a closer look at Lt−1, we leverage the form of q(xt−1 | xt, x0) to make
an assumption about the form of pθ(xt−1 | xt). Specifically, we assume that
they follow a similar distribution. However, the mean parameter of q is the only
term we cannot compute directly, as it requires knowledge of the original input

4

image x0.
Thus, we suppose:

pθ(xt−1 | xt) = N
(
xt−1;µθ(xt, t), β̃tI

)
Then, the primary objective is to learn µθ(xt, t), ensuring that it closely approx-
imates µ̃t(xt, x0) by minimizing the KL Divergence between these quantites:

DKL

(
q(xt−1 | xt, x0) || pθ(xt−1 | xt)

)
= DKL

(
N
(
xt−1; µ̃t(xt, x0), β̃tI

)
|| N

(
xt−1;µθ(xt, t), β̃tI

))

=
1

2

1− ᾱt

βt

(
1− ᾱt−1

) ||µθ(xt, t)− µ̃t(xt, x0)||22 (5)

(We let the proof in Section 8.5)

Our goal is to estimate µ̃t(xt, x0), and we know its form is given by:

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

During the denoising process the only thing we do not know in µ̃t(xt, x0) is x0.
We will use the analytical form of µ̃t(xt, x0) to suppose the form of µθ(xt, t):

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt
xθ +

√
αt(1− ᾱt−1)

1− ᾱt
xt

Here, we estimate x0 by xθ the prediction of the input sample by the model.
Then:

DKL

(
q(xt−1 | xt, x0) || pθ(xt−1 | xt)

)
=

1

2

1− ᾱt

βt

(
1− ᾱt−1

) ||µθ(xt, t)− µ̃t(xt, x0)||22

=
1

2

βt · ᾱt−1(
1− ᾱt−1

)(
1− ᾱt

) ||xθ − x0||22 (6)

(We let the proof in Section 8.5)
Furthermore, using 1:

x0 =
xt −

√
1− ᾱtϵ√
ᾱt

But during the denoising process, we do not know the noise ϵ used to noise the
model. Then we consider:

5

xθ =
xt −

√
1− ᾱtϵθ√
ᾱt

Where ϵθ is the estimation by the model of the true initial noise ϵ. Thus:

DKL

(
q(xt−1 | xt, x0) || pθ(xt−1 | xt)

)
=

1

2

βt · ᾱt−1(
1− ᾱt−1

)(
1− ᾱt

) ||xθ − x0||22

=
1

2

β2
t

β̃t

(
1− ᾱt

)
αt

||ϵθ − ϵ0||22 (7)

(We let the proof in Section 8.5)

During training, we focus solely on minimizing the simple term:

L = ||ϵθ − ϵ0||22

Thus, the model, given xt and t tries to estimate the input noise ϵ sampled.

4 The training

We will detail the training for a single sample:

Algorithm 1: Training Procedure for Diffusion Models

Input: Training dataset, number of timesteps T , model ϵθ
1 while not converged do
2 1. Sample x0 from the training set.
3 2. Sample a timestamp t ∼ Uniform({1, . . . , T}).
4 3. Sample noise ϵ ∼ N (0, I) with the same shape as x0.
5 4. Construct xt using xt =

√
ᾱtx0 +

√
1− ᾱtϵ.

6 5. Feed xt and t into the model ϵθ(xt, t) to predict ϵ.
7 6. Compute the loss: L = ||ϵθ(xt, t)− ϵ||22.
8 7. Perform backpropagation to update θ.

9 end
Output: Trained model parameters θ.

5 Details

5.1 Architecture

We will use for model the U-Net architecture [unet]. It will takes as input xt

and t and tries to predict ϵ the input noise.

6

Figure 3: U-Net architecture

5.2 Hyperparameters

• We assume T = 1000 noise steps.

• βt increases linearly from β1 = 10−4 to βT = 0.02.

• The time information is provided to the model using Sinusoidal Positional
Embeddings, as introduced in [4].

• The authors empirically found that replacing β̃t with βt alone yields sat-
isfactory results.

6 The Generation process

To generate new digits, we are interested the quantity:

pθ(xt−1 | xt) = N
(
xt−1;µθ(xt, t), βt

)
Where:

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt
xθ +

√
αt(1− ᾱt−1)

1− ᾱt
xt

We saw that:

xθ =
xt −

√
1− ᾱtϵθ√
ᾱt

Thus:

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ
)

(8)

(We let the proof in Section 8.6)

7

Then we will use the reparameterization trick to compute xt−1, the denoised
version of xt, using the following formula:

xt−1 = µθ(xt, t) +
√
βtz with z ∼ N

(
0, I

)
Algorithm 2: Generation Procedure for Diffusion Models

Input: Number of steps T , noise schedule {βt}Tt=1, and model µθ(xt, t).
1 1. Initialize: Sample xT ∼ N (0, I).
2 2. For t = T, T − 1, . . . , 1:

• Sample z ∼ N (0, I) if t > 1, else set z = 0.

• Compute xt−1 = µθ(xt, t) +
√
βtz.

3. Return: x0.
Output: Generated sample x0.

7 Experiments

We implement a basic DDPM with a U-Net based architecture for the Fashion-
MNIST Dataset.

Figure 4: Fashion-MNIST Generation

The code can be found here:
https://github.com/vilhess/codes/tree/main/ddpm

8

8 Proofs

8.1 proof of 1

We will show by induction:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

where:

• ᾱt =
∏t

s=1 αs,

• αt = 1− βt,

• ϵ ∼ N (0, I).

We have:
xt =

√
1− βtxt−1 +

√
βtϵt

for t = 1:

x1 =
√
1− β1x0 +

√
β1ϵ1

=
√
α1x0 +

√
1− α1ϵ1

=
√
ᾱ1x0 +

√
1− ᾱ1ϵ1

So it is true for t = 1
Let’s suppose it is true for xt. Then we need to show:

xt+1 =
√
ᾱt+1x0 +

√
1− ᾱt+1ϵ

We know:

xt+1 =
√
1− βt+1xt +

√
βt+1ϵt+1

=
√
1− βt+1

(√
ᾱtx0 +

√
1− ᾱtϵ

)
+

√
βt+1ϵt+1

=
√
αt+1

(√
ᾱtx0 +

√
1− ᾱtϵ

)
+

√
1− αt+1ϵt+1

=
√
αt+1

√
ᾱtx0 +

√
αt+1

√
1− ᾱtϵ+

√
1− αt+1ϵt+1

=
√
ᾱt+1x0 +

√
αt+1

√
1− ᾱtϵ+

√
1− αt+1ϵt+1

We have:

• √
αt+1

√
1− ᾱtϵ ∼ N (0, αt+1(1− ᾱt)I)

9

•
√
1− αt+1ϵt+1 ∼ N (0, (1− αt+1)I)

So summing blue + red:

∼ N (0, (αt+1(1− ᾱt) + 1− αt+1)I)

∼ N (0, (αt+1 − ᾱt+1 + 1− αt+1)I)

∼ N (0, (1− ᾱt+1)I)

Thus:

xt+1 =
√
ᾱt+1x0 +

√
αt+1

√
1− ᾱtϵ+

√
1− αt+1ϵt+1

=
√
ᾱt+1x0 +

√
1− ᾱt+1ϵ

So we finish the proof of 1 by induction.

8.2 proof of 2

Eq(x0)

[
log pθ(x)

]
= Eq(x0)

[
log

∫
pθ(x0:T) dx1:T

]
= Eq(x0)

[
log

∫
q(x1:T | x0)

pθ(x0:T)

q(x1:T | x0)
dx1:T

]
= Eq(x0)

[
logEq(x1:T |x0)

[pθ(x0:T)

q(x1:T | x0)

]]
≥ Eq(x0)

[
Eq(x1:T |x0)

[
log

pθ(x0:T)

q(x1:T | x0)

]]
≥ Eq(x0:T)

[
log

pθ(x0:T)

q(x1:T | x0)

]
≥ −Eq(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)

]
So we finish the proof of 2.

10

8.3 proof of 3

LVLB = Eq(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)

]
= Eq(x0:T)

[
log

∏T
t=1 q(xt | xt−1)

pθ(xT)
∏T

t=1 pθ(xt−1 | xt)

]
= Eq(x0:T)

[
− log pθ(xT) + log

∏T
t=1 q(xt | xt−1)∏T
t=1 pθ(xt−1 | xt)

]

= Eq(x0:T)

[
− log pθ(xT) + log

T∏
t=1

q(xt | xt−1)

pθ(xt−1 | xt)

]

= Eq(x0:T)

[
− log pθ(xT) +

T∑
t=1

log
q(xt | xt−1)

pθ(xt−1 | xt)

]

= Eq(x0:T)

[
− log pθ(xT) +

T∑
t=2

log
q(xt | xt−1)

pθ(xt−1 | xt)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

Furthermore:

q(xt | xt−1) = q(xt | xt−1, x0) (because this is the noise processus)

=
q(xt, xt−1, x0)

q(xt−1, x0)
(using Bayes Formula)

=
q(xt, xt−1, x0)

q(xt, x0)

q(xt, x0)

q(x0)

q(x0)

q(xt−1, x0)

= q(xt−1 | xt, x0)
q(xt | x0)

q(xt−1 | x0)
(using Bayes Formula)

Thus:

11

LVLB = Eq(x0:T)

[
− log pθ(xT) +

T∑
t=2

log
q(xt | xt−1)

pθ(xt−1 | xt)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq(x0:T)

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1 | xt, x0)

pθ(xt−1 | xt)

q(xt | x0)

q(xt−1 | x0)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq(x0:T)

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1 | xt, x0)

pθ(xt−1 | xt)
+

T∑
t=2

log
q(xt | x0)

q(xt−1 | x0)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq(x0:T)

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1 | xt, x0)

pθ(xt−1 | xt)
+ log

q(xT | x0)

q(x1 | x0)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq(x0:T)

[
q(xT | x0)

log pθ(xT)
+

T∑
t=2

log
q(xt−1 | xt, x0)

pθ(xt−1 | xt)
− log q(x1 | x0) + log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq(x0:T)

[
q(xT | x0)

log pθ(xT)
+

T∑
t=2

log
q(xt−1 | xt, x0)

pθ(xt−1 | xt)
− log pθ(x0 | x1)

]

So we finish the proof of 3.

8.4 proof of 4

Firstly, we introduce:

β̃t =

(
αt

1− αt
+

1

1− ᾱt−1

)−1

=

(
αt − αtᾱt−1 + 1− αt

(1− αt)(1− ᾱt−1)

)
=

(
1− ᾱt

βt(1− ᾱt−1)

)

= βt

(
1− ᾱt−1

)
1− ᾱt

12

And:

µ̃(xt, x0) =

(√
αtxt

1− αt
+

√
ᾱt−1x0

1− ᾱt−1

)
β̃t

=

(√
αtxt

1− αt
+

√
ᾱt−1x0

1− ᾱt−1

)
βt

1− ᾱt−1

1− ᾱt

=
1− ᾱt−1

1− ᾱt
βt

√
αtxt

1− αt
+

1− ᾱt−1

1− ᾱt
βt

√
ᾱt−1x0

1− ᾱt−1

=
1− ᾱt−1

1− ᾱt

√
αtxt +

√
ᾱt−1x0

1− ᾱt
βt

=

√
αt

(
1− ᾱt−1

)
1− ᾱt

xt + βt

√
ᾱt−1

1− ᾱt
x0

Thus:

q(xt−1 | xt, x0) =
q(xt−1, xt | x0)

q(xt | x0)

=
q(xt | xt−1, x0)q(xt−1 | x0)

q(xt | x0)

= q(xt | xt−1)
q(xt−1 | x0)

q(xt | x0)
(red because noise process)

We know:

• red = N (xt;
√
1− βtxt−1, βtI).

• blue = N (xt;
√
ᾱt−1x0, (1− ᾱt−1)I)

• green = N (xt;
√
ᾱtx0, (1− ᾱt)I)

Then:

q(xt−1 | xt, x0) = q(xt | xt−1)
q(xt−1 | x0)

q(xt | x0)

∝ exp

[
− 1

2

((
xt −

√
αtxt−1

)2
1− αt

)
+

(
xt−1 −

√
ᾱt−1x0

)2
1− ᾱt−1

−
(
xt −

√
ᾱtx0

)2
1− ᾱt

]

13

= exp

[
− 1

2

(
x2
t − 2xt

√
αtxt−1 + αtx

2
t−1

1− αt
+

x2
t−1 − 2xt−1

√
ᾱt−1x0 + ᾱt−1x

2
0

1− ᾱt−1
− x2

t − 2xt
√
ᾱtx0 + ᾱtx

2
0

1− ᾱt

)]

= exp

(
− 1

2

[
x2
t−1

(
αt

1− αt
+

1

1− ᾱt−1

)
− 2xt−1

(
xt
√
αt

1− αt
+

√
ᾱt−1x0

1− ᾱt−1

)
+ C(xt, x0)

])

= exp

(
− 1

2

[
x2
t−1

β̃t

− 2xt−1
µ̃t(xt, x0)

β̃t

]
+ C(xt, x0)

)

= exp

(
− 1

2

[
x2
t−1 − 2xt−1µ̃t(xt, x0)

β̃t

]
+ C(xt, x0)

)
This corresponds to the probability density function of a Gaussian distribution,
given by:

N
(
xt−1; µ̃t(xt, x0), β̃tI

)
,

Then we finish the proof of 4.

14

8.5 proofs of 5, 6, 7

DKL

(
N
(
xt−1; µ̃t(xt, x0), β̃tI

)
|| N

(
xt−1;µθ(xt, t), β̃tI

))

= E
xt−1∼N

(
µ̃t(xt,x0),β̃tI

)[− N

2
log 2π − 1

2
log

(
det β̃tI

)
− 1

2

(
xt−1 − µ̃t(xt, x0)

)T
β̃−1
t I

(
xt−1 − µ̃t(xt, x0)

)
+

N

2
log 2π +

1

2
log

(
det β̃tI

)
+

1

2

(
xt−1 − µθ(xt, t)

)T
β̃−1
t I

(
xt−1 − µθ(xt, x0)

)]

=
1

2
E
xt−1∼N

(
µ̃t(xt,x0),β̃tI

)[(xt−1 − µθ(xt, t)
)T

β̃−1
t I

(
xt−1 − µθ(xt, x0)

)
−
(
xt−1 − µ̃t(xt, x0)

)T
β̃−1
t I

(
xt−1 − µ̃t(xt, x0)

)]

=
1

2
E
xt−1∼N

(
µ̃t(xt,x0),β̃tI

)[(xt−1 − µθ(xt, t)
)T

β̃−1
t I

(
xt−1 − µθ(xt, x0)

)]

− 1

2
E
xt−1∼N

(
µ̃t(xt,x0),β̃tI

)[(xt−1 − µ̃t(xt, x0)
)T

β̃−1
t I

(
xt−1 − µ̃t(xt, x0)

)]

=
1

2

((
µ̃t(xt, x0)− µθ(xt, t)

)T
β̃−1
t I

(
µ̃t(xt, x0)− µθ(xt, t)

)
+ tr

(
β̃−1
t β̃tI

))

− 1

2

((
µθ(xt, t)− µθ(xt, t)

)T
β̃−1
t I

(
µθ(xt, t)− µθ(xt, t)

)
+ tr

(
β̃−1
t β̃tI

))
(using property 9)

=
1

2

(
1

β̃t

(
µ̃t(xt, x0)− µθ(xt, t)

)T (
µ̃t(xt, x0)− µθ(xt, t)

)
+ J

)
− 1

2
J

=
1

2β̃t

(
µ̃t(xt, x0)− µθ(xt, t)

)T (
µ̃t(xt, x0)− µθ(xt, t)

)
=

1

2

1− ᾱt

βt

(
1− ᾱt−1

) ||µθ(xt, t)− µ̃t(xt, x0)||22 (proof of 5)

=
1

2

1− ᾱt

βt

(
1− ᾱt−1

) ||√ᾱt−1βt

1− ᾱt
xθ +

√
αt(1− ᾱt−1)

1− ᾱt
xt −

√
ᾱt−1βt

1− ᾱt
x0 −

√
αt(1− ᾱt−1)

1− ᾱt
xt||22

=
1

2

1− ᾱt

βt

(
1− ᾱt−1

) ||√ᾱt−1βt

1− ᾱt
xθ −

√
ᾱt−1βt

1− ᾱt
x0||22

=
1

2

1− ᾱt

βt

(
1− ᾱt−1

) ||√ᾱt−1βt

1− ᾱt

(
xθ − x0

)
||22

=
1

2

ᾱt−1 · βt(
1− ᾱt−1

)(
1− ᾱt

) ||xθ − x0||22 (proof of 6)

15

Furthermore, using 1:

x0 =
xt −

√
1− ᾱtϵ√
ᾱt

As we use xθ as an estimation of x0, we will consider:

xθ =
xt −

√
1− ᾱtϵθ√
ᾱt

Where the only unknown term is ϵθ. Thus:

DKL

(
N
(
xt−1; µ̃t(xt, x0), β̃t

)
|| N

(
xt−1;µθ(xt, t), β̃t

))

=
1

2

ᾱt−1 · βt(
1− ᾱt−1

)(
1− ᾱt

) ||xθ − x0||22

=
1

2

ᾱt−1 · βt(
1− ᾱt−1

)(
1− ᾱt

) ||xt −
√
1− ᾱtϵθ√
ᾱt

− xt −
√
1− ᾱtϵ√
ᾱt

||22

=
1

2

ᾱt−1 · βt(
1− ᾱt−1

)(
1− ᾱt

) ||√1− ᾱt√
ᾱt

(
ϵ− ϵθ

)
||22

=
1

2

β2
t · ᾱt−1

(
1− ᾱt

)
βt

(
1− ᾱt

)(
1− ᾱt−1

)
ᾱt

||ϵ− ϵθ||22

=
1

2

(
1− ᾱt

)
· β2

t

βt

(
1− ᾱt−1

)(
1− ᾱt

)
αt

||ϵ− ϵθ||22

=
1

2

β2
t

β̃t

(
1− ᾱt

)
αt

||ϵ− ϵθ||22 (proof of 7)

We recall this property:
Let: X ∼ N (µ,Σ) Then:

E
[(
X − u

)T
A
(
X − u

)]
=

(
µ− u

)T
A
(
µ− u

)
+ tr(AΣ) (9)

8.6 proof of 8.6

We saw:

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt
xθ +

√
αt(1− ᾱt−1)

1− ᾱt
xt

We have:

xθ =
xt −

√
1− ᾱtϵθ√
ᾱt

16

Thus:

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt
xθ +

√
αt(1− ᾱt−1)

1− ᾱt
xt

=

√
ᾱt−1βt

1− ᾱt

(
xt −

√
1− ᾱtϵθ√
ᾱt

)
+

√
αt(1− ᾱt−1)

1− ᾱt
xt

=

√
ᾱt−1βt(

1− ᾱt

)√
ᾱt

xt +

√
αt

(
1− ᾱt−1

)
1− ᾱt

xt −
√
1− ᾱt

√
ᾱt−1βt√

ᾱt

(
1− ᾱt

) ϵθ

= xt

(√
ᾱt−1βt(

1− ᾱt

)√
ᾱt

+

√
αt

(
1− ᾱt−1

)
1− ᾱt

)
− βt√

αt

√
1− ᾱt

ϵθ

= xt

(
βt(

1− ᾱt

)√
αt

+

√
αt

(
1− ᾱt−1

)
1− ᾱt

)
− βt√

αt

√
1− ᾱt

ϵθ

= xt

(
βt + αt

(
1− ᾱt−1

)(
1− ᾱt

)√
αt

)
− βt√

αt

√
1− ᾱt

ϵθ

= xt

(
1− αt + αt − ᾱt

)(
1− ᾱt

)√
αt

)
− βt√

αt

√
1− ᾱt

ϵθ

= xt

(
1

√
αt

)
− βt√

αt

√
1− ᾱt

ϵθ

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ

)
So we finish the proof of 8.

References

[1] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML]. url: https://arxiv.org/abs/1406.2661.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Prob-
abilistic Models”. In: CoRR abs/2006.11239 (2020). arXiv: 2006.11239.
url: https://arxiv.org/abs/2006.11239.

[3] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes.
2022. arXiv: 1312.6114 [stat.ML]. url: https://arxiv.org/abs/1312.
6114.

17

[4] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

18

