PatchTrAD: A Patch-based Transformer for time series Anomaly Detection
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Introduction

Context. Time series anomaly detection (TSAD) aims to flag observations that deviate from expected patterns. Models must be accurate, lightweight,
and fast at inference to operate in real time on edge devices.
Deep learning methods for unsupervised TSAD can involve signal reconstruction or prediction, latent space modeling, or the
generation of synthetic anomalies. Most of the time, when dealing with observation x;, we consider the w past observations, denoted as x¢_ ..
Contributions. We propose PatchTrAD, a lightweight anomaly detection model that leverages the efficiency of patch-based Transformers, the
benefits of channel independence, and the robustness of reconstruction-based approaches for TSAD.

Related works.

2. PatchTrAD Overview

Channel independence refers to treating each modality as an indepen-
dent signal within a model, without integrating information across modal-

ities. Empirical studies show it maintains performance while requiring less

training data.

Each univariate signal (™) € R¥ is divided into patches of fixed length
Pien. A stride S determines the non-overlapping region between patches.
We also pad the end of the sequence by repeating its last value S times

before patching. The number of patches is:

Each patch acts as a token (analogous to LLMs), and the target obser-
vation always lies in the final patch.
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Fig. 1. PatchTrAD Overview.
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Attn; ; represents how much information the model extracts from patc
sentation of patch 2. Each patch is projected into a D-dimensional space and we consider positional
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To ensure a fair and interpretable comparison, we evaluate using the ROC-AUC score, effective for
evaluating models across datasets with varying class imbalance.
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encoding to model temporal dependencies. Thus, z(l) c RP.

5. Results
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3. Transformer attention mechanism of PatchTrAD

PatchITrAD consists of a Transformer Encoder, where the time dimension is represented by P,um.
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This metric eliminates the need

for threshold selection, as it is handled intrinsically. We compare PatchTrAD to 18 state-of-the-art

models across 6 univariate and multivariate datasets. For each dataset, training is performed only
on normal data, while testing includes both normal and anomalous observations.

4. Training and Inference

Projection heads map embedded patches ngT)
to reconstructed patches fz(% ™) ¢ RPen. Patch-
TrAD is trained to reconstruct all input patches

by minimizing the following loss::
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As x; lies in the last patch, the anomaly score
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where A(x;) is compared to a predefined
threshold 7. The decision rule is:

{ abnormal
Lt —

normal

— 3 |7,

if A(CEt) Z T

otherwise

6. Conclusion

PatchTrAD is a Transformer-based model lever-
aging patches for TSAD based on reconstruc-
tion error. It competes with state-of-the-
art approaches and pertforms well across di-
verse datasets, both univariate and multivariate.
PatchTrAD remains efficient during inference,
making it suitable for a wide range of TSAD
problems.
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