
PatchTrAD: A Patch-Based Transformer focusing on
Patch-Wise Reconstruction Error for Time Series Anomaly

Detection

Vilhes Samy-Melwan
Joint work with Gasso Gilles and Mokhtar Z. Alaya



1. Time Series Anomaly Detection (TSAD)
Introduction

What is TSAD?

TSAD refers to the task of identifying whether new observations from a data stream significantly
differ from normal behaviour.

Univariate signal Multivariate signal
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1. Time Series Anomaly Detection (TSAD)
Unsupervised Learning for TSAD

Anomalies are rare events. We train the model exclusively on normal (clean) samples.
At inference time, when anomalies may occur, the model outputs an anomaly score.
Higher scores indicate higher likelihood of abnormal behavior.

Where M denotes the number of modalities and xt ∈ RM the observation at time t.

In the following, our attention is focused on deep learning–based models.
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2. Deep Learning for TSAD: related works
Sliding window

Sliding window

When dealing with xt ∈ RM , we do not consider the whole past but w previous observations.

w : sliding window length,

xt−w+1:t ∈ Rw×M : signals
from time t − w + 1 to t.
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2. Deep Learning for TSAD: related works
Prediction-based models

fθ: predictive model

x̂t = fθ(xt−w+1:t−1) ∈ RM :
model’s prediction of the true
signal xt given the context.

Anomaly score

The anomaly score of prediction-based models corresponds to the prediction error given by

anomaly score = ||x̂t − xt ||2.

According to the model, the higher the anomaly score, the more likely xt is abnormal.
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2. Deep Learning for TSAD: Related works
Reconstruction-based models

x̂t−w+1:t = Decoder(Encoder(x̂t−w+1:t)) ∈ Rw×M .

Anomaly score

The anomaly score of reconstruction-based models corresponds to the reconstruction error given
by

anomaly score = ||x̂t−w+1:t − xt−w+1:t ||2.

According to the model, the higher the anomaly score, the more likely xt is abnormal.
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2. Deep Learning for TSAD: related works
Architectures

MLP (Zhong et al. 2024) LSTM (Malhotra et al. 2016)

Transformer (Nie et al. 2023) CNN (Ismail Fawaz et al. 2020)
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2. Deep Learning for TSAD: related works
Benchmarks and experimental protocol

Dataset # Feats Train Size Test Size % Anomaly Test

NYC Taxi 1 5570 4750 0.11
EC2 1 1984 2049 0.15
SWAT 51 495000 449919 12.13
SMD 38 708405 708420 4.16
MSL 55 58317 73729 10.48
SMAP 25 140825 444035 12.85

Datasets Statistics:

1 Train a model on a
training set containing
only normal observations.

2 Evaluate its performance
on a test set, which
includes both normal and
anomalous samples, using
the ROC-AUC metric.

Why the ROC-AUC?

The ROC-AUC provides a robust estimation and ranking of classifier performance across different
class imbalances (Richardson et al. 2024).
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2. Deep Learning for TSAD: related works
Experiments: ROC-AUC scores (red: first, blue: second, green: third)

Dataset NYC-Taxi EC2 MSL SWaT SMAP SMD

Category Model ROC-AUC

Others

DC-Detector 0.498 0.827 0.537 0.435 0.566 0.530
AnomalyTransformer 0.491 0.994 0.553 0.819 0.621 0.678
DOC 0.704 0.804 0.538 0.404 0.634 0.766
DROCC 0.529 0.886 0.593 0.751 0.705 0.638

Prediction-based

PatchTST-revin 0.552 0.999 0.626 0.233 0.537 0.873
LSTM-revin 0.646 0.998 0.627 0.238 0.586 0.858
LSTM 0.511 0.999 0.595 0.842 0.604 0.833
GAT 0.689 0.999 0.617 0.816 0.646 0.820
PatchTST 0.696 0.999 0.626 0.843 0.622 0.882

Reconstruction-based

MADGAN 0.782 0.011 0.460 0.791 0.568 0.708
USAD 0.669 0.977 0.684 0.255 0.547 0.605
TimeMixer 0.523 0.942 0.681 0.235 0.536 0.900
GPT4TS 0.272 0.954 0.699 0.235 0.544 0.890
TranAD 0.551 0.967 0.644 0.815 0.581 0.884
AE-LSTM 0.716 0.998 0.612 0.840 0.618 0.828
PatchAD 0.972 0.998 0.622 0.822 0.671 0.818
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2. Deep Learning for TSAD: related works
Experiments: critical difference diagram for ROC-AUC scores using the post-hoc Nemenyi test with
α = 5%, where better-ranked methods appear on the upper right.

Conclusion: PatchTST (Nie et al. 2023), a prediction-based model leveraging transformers
(Vaswani et al. 2017), patching, and channel independence, achieves the best performance.
The second (Zhong et al. 2024) and third (Malhotra et al. 2016) models are
reconstruction-based.
Our Idea (PatchTrAD): combine the strengths of patch-based transformers considering
channel independence and reconstruction-based approaches for TSAD.
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3. PatchTrAD
Channel Independence and Patching

Channel independence means that each patch contains information from a single modality
without cross-modality sharing. Empirical studies show that this design improves model
robustness while maintaining performance (Han, Ye, and Zhan 2023).
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3. PatchTrAD
Transformer Attention Mechanism
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3. PatchTrAD
Training strategy and inference

By construction, the test observation xt always belongs to the last patch of each modality.
Therefore, during inference, we focus on the error of this final patch.
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3. PatchTrAD
Final Results: ROC-AUC scores (red: first, blue: second, green: third)

Dataset NYC-Taxi EC2 MSL SWaT SMAP SMD

Category Model ROC-AUC

Others

DC-Detector 0.498 0.827 0.537 0.435 0.566 0.530
AnomalyTransformer 0.491 0.994 0.553 0.819 0.621 0.678
DOC 0.704 0.804 0.538 0.404 0.634 0.766
DROCC 0.529 0.886 0.593 0.751 0.705 0.638

Predictions-based

PatchTST-revin 0.552 0.999 0.626 0.233 0.537 0.873
LSTM-revin 0.646 0.998 0.627 0.238 0.586 0.858
LSTM 0.511 0.999 0.595 0.842 0.604 0.833
GAT 0.689 0.999 0.617 0.816 0.646 0.820
PatchTST 0.696 0.999 0.626 0.843 0.622 0.882

Reconstruction-based

MADGAN 0.782 0.011 0.460 0.791 0.568 0.708
USAD 0.669 0.977 0.684 0.255 0.547 0.605
TimeMixer 0.523 0.942 0.681 0.235 0.536 0.900
GPT4TS 0.272 0.954 0.699 0.235 0.544 0.890
TranAD 0.551 0.967 0.644 0.815 0.581 0.884
AE-LSTM 0.716 0.998 0.612 0.840 0.618 0.828
PatchAD 0.972 0.998 0.622 0.822 0.671 0.818
PatchTrAD (ours) 0.922 0.999 0.661 0.845 0.660 0.869
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3. PatchTrAD
Experiments: critical difference diagram for ROC-AUC scores using the post-hoc Nemenyi test with
α = 5%, where better-ranked methods appear on the upper right.
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4. Conclusion

We introduced a Patch-Based Transformer leveraging reconstruction error,

Effective for both univariate and multivariate signal monitoring,

Efficient and lightweight at inference,

Achieves competitive performance compared to SOTA methods,

PatchTrAD shows strong potential for addressing future industrial TSAD challenges.

Future Work: Currently developing foundation models for zero-shot time series anomaly
detection.

15 / 15



Thank You!
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Inference speed comparison I
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SMAP Dataset configuration: 25 modalities

PatchTrAD (ours)
PatchAD
PatchTST

Soil Moisture Active Passive
(SMAP) dataset 25 features.
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SMD Dataset configuration: 38 modalities
PatchTrAD (ours)
PatchAD
PatchTST

Server Machine Dataset (SMD) 38
features.
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SWaT Dataset configuration: 51 modalities

PatchTrAD (ours)
PatchAD
PatchTST

Secure Water Treatment (SWaT)
dataset 51 features.

Figure: Inference speed comparison of the 3 best models across 3 datasets.
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