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1. Time Series Anomaly Detection (TSAD)

Introduction

What is TSAD?

TSAD refers to the task of identifying whether new observations from a data stream significantly
differ from normal behaviour.
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1. Time Series Anomaly Detection (TSAD)

Unsupervised Learning for TSAD

@ Anomalies are rare events. We train the model exclusively on normal (clean) samples.

@ At inference time, when anomalies may occur, the model outputs an anomaly score.
@ Higher scores indicate higher likelihood of abnormal behavior.
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Where M denotes the number of modalities and x; € RM the observation at time t.

In the following, our attention is focused on deep learning—based models.
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2. Deep Learning for TSAD: related works

Sliding window

Sliding window

When dealing with x, € RM, we do not consider the whole past but w previous observations.

Multivariate Signal

. Nw\\/\j//\qi\M e w: sliding window length,

® Xt_wi1:t € RY*M: signals
X1 € RWM from time t — w + 1 to t.

Xt—w+1 X
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2. Deep Learning for TSAD: related works

Prediction-based models

rediction-based models . .
e ; o fy: predictive model

Predicted signal %,

o X = fo(Xe—w1:t-1) € RM:
model’s prediction of the true
Signal observed 5 signal x; given the context.

Value

Anomaly score
The anomaly score of prediction-based models corresponds to the prediction error given by

anomaly score = [|&: — x¢||2.
According to the model, the higher the anomaly score, the more likely x; is abnormal.
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2. Deep Learning for TSAD: Related works

Reconstruction-based models

Input Signals Reconstructed Signals
s

— input signal

— reconstructed signal

Encoder Decoder s

q # Value 75

Value 75

Latent Time
Representation

Rt—wi1:+ = Decoder(Encoder(X;_y11:¢)) € R¥*M,
Anomaly score

The anomaly score of reconstruction-based models corresponds to the reconstruction error given
by

o 2
anomaly score = ||Xe—w1:t — Xe—w1:¢][-
According to the model, the higher the anomaly score, the more likely x; is abnormal.
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2. Deep Learning for TSAD: related works

Architectures

Transformer (Nie et al. 2023) CNN (Ismail Fawaz et al. 2020)
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2. Deep Learning for TSAD: related works

Benchmarks and experimental protocol

Dataset ~ # Feats Train Size Test Size % Anomaly Test

NYC Taxi 1
EC2 1
SWAT 51
SMD 38
MSL 55
SMAP 25

5570
1984
495000
708405
58317
140825

4750
2049
449919
708420
73729
444035

0.11
0.15
12.13
4.16
10.48
12.85

Why the ROC-AUC?

Datasets Statistics:

@ Train a model on a
training set containing
only normal observations.

@ Evaluate its performance
on a test set, which
includes both normal and
anomalous samples, using
the ROC-AUC metric.

The ROC-AUC provides a robust estimation and ranking of classifier performance across different

class imbalances (Richardson et al. 2024).
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2. Deep Learning for TSAD: related works

Experiments: ROC-AUC scores (red: first, blue: second, green: third)

\ | Dataset | NYC-Taxi  EC2  MSL SWaT SMAP  SMD
| Category | Model | ROC-AUC

DC-Detector 0.498 0.827 0.537 0.435 0.566 0.530

Others AnomalyTransformer 0.491 0.994 0.553 0.819 0.621 0.678

DOC 0.704 0.804 0.538 0.404 0.634 0.766

DROCC 0.529 0.886 0.593 0.751 0.705 0.638

PatchTST-revin 0.552 0.999 0.626 0.233 0.5637 0.873

LSTM-revin 0.646 0.998 0.627 0.238 0.586 0.858

Prediction-based LSTM 0.511 0.999 0.595 0.842 0.604 0.833

GAT 0.689 0.999 0.617 0.816 0.646  0.820

PatchTST 0.696 0.999 0.626 0.843 0.622 0.882

MADGAN 0.782 0.011 0.460 0.791 0.568 0.708

USAD 0.669 0.977 0.684 0.255 0.547 0.605

TimeMixer 0.523 0.942 0.681 0.235 0.536 0.900

Reconstruction-based | GPT4TS 0.272 0.954 0.699 0.235 0.544  0.890

TranAD 0.551 0.967 0.644 0.815 0.581 0.884

AE-LSTM 0.716 0.998 0.612 0.840 0.618 0.828

PatchAD 0.972 0.998 0.622 0.822 0.671 0.818
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2. Deep Learning for TSAD: related works

Experiments: critical difference diagram for ROC-AUC scores using the post-hoc Nemenyi test with
« = 5%, where better-ranked methods appear on the upper right.

6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
| ISP I I N N A SO I N I NI S B I |

1 1 1 1 L 1
dcdetector 135000 | L 34167 natchtstiddy Prediction + Patch + Transformer
madgan 110000 0| L 5083 patchad a Reconstruction + Patch + MLP
doc 10.3333 6.1667 aelstm a Reconstruction + LSTM
drocc 10.0000 6.1667 gat
anotrans 100000 7333 tranad
usad 9.8333 7.5000 Istm
timemixer —28333 75833 patchtst_rev
gptats 28333 84167 |stm_rev

Conclusion: PatchTST (Nie et al. 2023), a prediction-based model leveraging transformers
(Vaswani et al. 2017), patching, and channel independence, achieves the best performance.
The second (Zhong et al. 2024) and third (Malhotra et al. 2016) models are
reconstruction-based.

Our Idea (PatchTrAD): combine the strengths of patch-based transformers considering
channel independence and reconstruction-based approaches for TSAD.
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3. PatchTrAD

Channel Independence and Patching

Channel
Independence Temporal Patching Patch (= Token LLM)
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Channel independence means that each patch contains information from a single modality
without cross-modality sharing. Empirical studies show that this design improves model
robustness while maintaining performance (Han, Ye, and Zhan 2023).
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3. PatchTrAD

Transformer Attention Mechanism
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3. PatchTrAD

Training strategy and inference
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By construction, the test observation x; always belongs to the last patch of each modality.
Therefore, during inference, we focus on the error of this final patch.
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3. PatchTrAD

Final Results: ROC-AUC scores (red: first, blue: second, green: third)

| | Dataset | NYC-Taxi EC2 MSL SWaT SMAP SMD
| Category | Model | ROC-AUC |

DC-Detector 0.498 0.827 0.537 0.435 0.566  0.530

Others AnomalyTransformer 0.491 0.994 0.553 0.819 0.621 0.678

DOC 0.704 0.804 0.538 0.404 0.634 0.766

DROCC 0.529 0.886 0.593 0.751 0.705 0.638

PatchTST-revin 0.552 0.999 0.626 0.233 0.537 0.873

LSTM-revin 0.646 0.998 0.627 0.238 0.586 0.858

Predictions-based LSTM 0.511 0.999 0.595 0.842 0.604 0.833

GAT 0.689 0.999 0.617 0.816 0.646  0.820

PatchTST 0.696 0.999 0.626 0.843 0.622  0.882

MADGAN 0.782 0.011 0.460 0.791 0.568 0.708

USAD 0.669 0.977 0.684 0.255 0.547 0.605

TimeMixer 0.523 0.942 0.681 0.235 0.536  0.900

Reconstruction-based GPTA4TS 0.272 0.954 0.699 0.235 0.544  0.890

TranAD 0.551 0.967 0.644 0.815 0.581 0.884

AE-LSTM 0.716 0.998 0.612 0.840 0.618 0.828

PatchAD 0.972 0.998 0.622 0.822 0.671 0.818

PatchTrAD (ours) 0.922  0.999 0.661 0.845 0.660 0.869
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3. PatchTrAD

Experiments: critical difference diagram for ROC-AUC scores using the post-hoc Nemenyi test with
« = 5%, where better-ranked methods appear on the upper right.
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4. Conclusion

We introduced a Patch-Based Transformer leveraging reconstruction error,

Effective for both univariate and multivariate signal monitoring,

°

°

o Efficient and lightweight at inference,

@ Achieves competitive performance compared to SOTA methods,
°

PatchTrAD shows strong potential for addressing future industrial TSAD challenges.

Future Work: Currently developing foundation models for zero-shot time series anomaly
detection.
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Inference speed comparison |

Inference Time (ms)

SMAP Dataset configuration: 25 modalities

SMD Dataset configuration: 38 modalities

SWaT Dataset configuration: 51 modalities
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Soil Moisture Active Passive
(SMAP) dataset 25 features.

50 70 100
Window size

Server Machine Dataset (SMD) 38
features.

50 70 100
Window size

Secure Water Treatment (SWaT)
dataset 51 features.

Figure: Inference speed comparison of the 3 best models across 3 datasets.
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