Long short-term Memory (LSTM)

Mathematical formulation

* Suppose that there are h hidden units, a batch size I“p'lt node
n, and d inputs « C,eR™"
+ X, € R"™%and H,_, € R™" * Its computation is equivalent to the one of
+ We get the following gate values three gates but with a tanh activation
It — J(thxi + Ht—lwhi + bl) Ct = tanh(Xthc + Ht_lwhc + bC)
F =0XWys+ H_Wpys+ by) el . .
0, = 6(X,W,y+H,_ Wy, +b,) Link with the input gate . .
e * The value of the input node interacts with
* W, eR™ the input gate to decide what should be

* W, e RM"
s I, F,0, € R™"

o = Sigmoid
© = element-wise product

Memory cell state Output gate and internal state
. ;et us ngﬁﬂgi‘ th«:'men:ory cell state « Finally, we have to define the output H,
t € OFLImEStEp & of the memory cell using both 0, and C,

added to the current internal state

C:=F,0C_1+1,0FT, H, = 0, O tanh(C,)
t = Ut t

» F, addresses how much of the old cell

internal state C,_4 we retain « When 0O, is close to 0, current memory

« I, governs how much we take new data does not impact the subsequent layer of
into account via C, the network

e IfF, = 1and I, = 0the memory cell .

When O; is close to 1, current memory

remains constant (C; = C¢y) adds information to the next layer
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Gated Recurrent Units (GRU)

R.=cX W, +H,_ Wp.+b,)
Zi=0XW,, +H._ Wy, + bz)

Candidate Hidden State

H, = tanh(X, W, + (R, O H,_{)Wpy, + bp,)
Hidden State
« Finally, we incorporate the effect of the update

gate Z; on the hidden state H,

H =Z,OH,,+(1-2,)OH,
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Stacking recurrent cells
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(Same thing for GRU)

Bi-directional RNN :
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Convolutional RNN :

All matrix products are replaced by convolultional operations.
Inputs, hiddens states, memory states are not of shape n x d but
n'x channels x height x width .
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(Same thing for GRU)


